Отклонение от среднего значения в процентах

Предельная ошибка выборки наблюдения, средняя ошибка выборки, порядок их расчета.

Кроме степенных средних в статистике для относительной характеристики величины варьирующего признака и внутреннего строения рядов распределения пользуются структурными средними, которые представлены ,в основном, модой и медианой.

—  — значение моды

—  — нижняя граница модального интервала

—  — величина интервала

—  — частота модального интервала

—  — частота интервала, предшествующего модальному

—  — частота интервала, следующего за модальным

Медиана — это значение признака, которое лежит в основе ранжированного ряда и делит этот ряд на две равные по численности части.

Отклонение от среднего значения в процентах

Ме = (n(число признаков в совокупности) 1)/2,

в случае четного числа признаков медиана будет равна средней из двух признаков находящихся в середине ряда).

—  — искомая медиана

—  — нижняя граница интервала, который содержит медиану

—  — сумма частот или число членов ряда

—  — сумма накопленных частот интервалов, предшествующих медианному

—  — частота медианного интервала

Пример. Найти моду и медиану.

Возрастные группы Число студентов Сумма накопленных частот ΣS
До 20 лет    
20 — 25    
25 — 30    
30 — 35    
35 — 40    
40 — 45    
45 лет и более    
Итого    

Решение:В данном примере модальный интервал находится в пределах возрастной группы 25-30 лет, так как на этот интервал приходится наибольшая частота (1054).

Это значит что модальный возраст студентов равен 27 годам.

Это значит что одна половина студентов имеет возраст до 27,4 года, а другая свыше 27,4 года.

Кроме моды и медианы могут быть использованы такие показатели, как квартили, делящие ранжированный ряд на 4 равные части, децили — 10 частей и перцентили — на 100 частей.

Рассмотрим подробно перечисленные выше способы формирования выборочной совокупности и возникающие при этом ошибки репрезентативности.Собственно-случайная выборка основывается на отборе единиц из генеральной совокупности наугад без каких-либо элементов системности. Технически собственно-случайный отбор проводят методом жеребьевки (например, розыгрыши лотерей) или по таблице случайных чисел.

Собственно-случайный отбор «в чистом виде» в практике выборочного наблюдения применяется редко, но он является исходным среди других видов отбора, в нем реализуются основные принципы выборочного наблюдения. Рассмотрим некоторые вопросы теории выборочного метода и формулы ошибок для простой случайной выборки.

Отклонение от среднего значения в процентах

Ошибка выборочного наблюдения – это разность между величиной параметра в генеральной совокупности, и его величиной, вычисленной по результатам выборочного наблюдения. Для средней количественного признака ошибка выборки определяется

— объема выборки: чем больше численность, тем меньше величина средней ошибки;

— степени изменения изучаемого признака: чем меньше вариация признака, а, следовательно, и дисперсия, тем меньше средняя ошибка выборки.

При случайном повторном отборе средняя ошибка рассчитывается: .Практически генеральная дисперсия точно не известна, но в теории вероятности доказано, что .Так как величина при достаточно больших n близка к 1, можно считать, что . Тогда средняя ошибка выборки может быть рассчитана: .Но в случаях малой выборки (при n{amp}lt;30) коэффициент необходимо учитывать, и среднюю ошибку малой выборки рассчитывать по формуле .

При случайной бесповторной выборке приведенные формулы корректируются на величину . Тогда средняя ошибка бесповторной выборки: и .Т.к. всегда меньше , то множитель ( ) всегда меньше 1. Это значит, что средняя ошибка при бесповторном отборе всегда меньше, чем при повторном.Механическая выборка применяется, когда генеральная совокупность каким-либо способом упорядочена (например, списки избирателей по алфавиту, телефонные номера, номера домов, квартир).

Начало отсчета выбирается разными способами: случайным образом, из середины интервала, со сменой начала отсчета. Главное при этом – избежать систематической ошибки. Например, при 5% выборке, если первой единицей выбрана 13-я, то следующие 33, 53, 73 и т.д.

По точности механический отбор близок к собственно-случайной выборке. Поэтому для определения средней ошибки механической выборки используют формулы собственно-случайного отбора.

При типическом отборе обследуемая совокупность предварительно разбивается на однородные, однотипные группы. Например, при обследовании предприятий это могут быть отрасли, подотрасли, при изучении населения – районы, социальные или возрастные группы. Затем осуществляется независимый выбор из каждой группы механическим или собственно-случайным способом.

Типическая выборка дает более точные результаты по сравнению с другими способами. Типизация генеральной совокупности обеспечивает представительство в выборке каждой типологической группы, что позволяет исключить влияние межгрупповой дисперсии на среднюю ошибку выборки. Следовательно, при нахождении ошибки типической выборки согласно правилу сложения дисперсий ( ) необходимо учесть лишь среднюю из групповых дисперсий. Тогда средняя ошибка выборки:при повторном отборе ,при бесповторном отборе ,где – средняя из внутригрупповых дисперсий в выборке.

Серийный (или гнездовой) отбор применяется в случае, когда генеральная совокупность разбита на серии или группы до начала выборочного обследования. Этими сериями могут быть упаковки готовой продукции, студенческие группы, бригады. Серии для обследования выбираются механическим или собственно-случайным способом, а внутри серии производится сплошное обследование единиц.

при повторном отборе: ,при бесповторном отборе: ,где R – общее число серий.

Комбинированный отбор представляет собой сочетание рассмотренных способов отбора.

Таким образом, при уменьшении процента выборки в 50 раз, ошибка выборки увеличилась незначительно, так как численность выборки не изменилась.Предположим, что численность выборки увеличили до 625 наблюдений. В этом случае ошибка выборки равна:Увеличение выборки в 2,8 раза при одной и той же численности генеральной совокупности снижает размеры ошибки выборки более чем в 1,6 раза.

sigma

Одним из научных принципов в теории выборочного метода является обеспечение достаточного числа отобранных единиц. Теоретически необходимость соблюдения этого принципа представлена в доказательствах предельных теорем теории вероятностей, которые позволяют установить, какой объем единиц следует выбрать из генеральной совокупности, чтобы он был достаточным и обеспечивал репрезентативность выборки.

Суть этой формулы – в том, что при случайном повторном отборе необходимой численности объем выборки прямо пропорционален квадрату коэффициента доверия (t2) и дисперсии вариационного признака (?2) и обратно пропорционален квадрату предельной ошибки выборки (?2). В частности, с увеличением предельной ошибки в два раза необходимая численность выборки может быть уменьшена в четыре раза. Из трех параметров два (t и ?) задаются исследователем.

При этом исследователь исходя из целии задач выборочного обследования должен решить вопрос: в каком количественном сочетании лучше включить эти параметры для обеспечения оптимального варианта? В одном случае его может больше устраивать надежность полученных результатов (t), нежели мера точности (?), в другом – наоборот.

Сложнее решить вопрос в отношении величины предельной ошибки выборки, так как этим показателем исследователь на стадии проектировки выборочного наблюдения не располагает, поэтому в практике принято задавать величину предельной ошибки выборки, как правило, в пределах до 10 % предполагаемого среднего уровня признака.

Относительное отклонение: что это и как оно рассчитывается?

Абсолютное отклонение — это различие в показателях отчетного или текущего периодов и любого другого прошедшего периода. Оно вычисляется для того, чтобы выяснить, насколько рентабельно предприятие.

Для расчета берутся два показателя (данные двух периодов или запланированные и фактические показатели), из них выбирается большее, а затем из него вычитают меньшее. Если налицо фактическое повышение оборота, то значение записывают со знаком « », если уменьшение — соответственно, с «-«.

По сути, относительное отклонение — это то же абсолютное, однако оно выражено уже не в конкретных числах, а в процентах. При этом значение на выходе всегда будет положительным.

Как найти относительное отклонение? Мы берем показатель текущего периода (или фактический показатель) и делим его на показатель более раннего периода (или планового), умножаем полученное значение на 100 и вычитаем 100.

Абсолютное отклонение – это разность между фактической и базовой величиной показателя. Абсолютные отклонения могут быть рассчитаны для любых количественных и качественных показателей (объема продукции, количественных и качественных показателей, характеризующих использование ресурсов, величины активов, прибыли, финансовых коэффициентов и т. п.). Например,

среднесписочная численность работающих;

выработка продукции на одного работающего.

Базовые значения показателей в анализе принято обозначать индексом 0, фактические – 1, отклонения (изменения) – символом ?.

Относительное отклонениепозволяет измерить прирост ресурса с учетом темпов роста продукции, выпущенной с использованием данного ресурса. Относительные отклонения вычисляются только для количественных показателей, характеризующих величину потребленных ресурсов (затрат ресурсов).

Чтобы найти относительное отклонение, нужно из фактической величины ресурса вычесть его базовую величину, скорректированную на коэффициент изменения объема продукции.

Величина R0 ? k N показывает, сколько ресурсов было бы необходимо для производства фактического объема продукции, если бы не изменялись качественные характеристики использования ресурсов.

Отрицательное относительное отклонение называется относительной экономией ресурса, положительное – относительным перерасходом.

Такое представление демонстрирует, что относительное отклонение возникает за счет разницы темпов роста ресурса и продукции. Если темп роста продукции опережает темп роста ресурса, возникает относительная экономия, что свидетельствует о достаточно эффективном использовании ресурса. Если же темп роста ресурса превышает темп роста продукции, ресурс используется неэффективно, о чем свидетельствует относительный перерасход.

Если же темпы роста ресурса и продукции совпадают, относительное отклонение равно нулю. Это означает, что прирост продукции получен экстенсивным путем, т. е. только за счет привлечения дополнительных ресурсов. При этом качественные показатели использования ресурса не изменяются.

На основании данных таблицы 3.1 оценим эффективность использования трудовых ресурсов.

Исходные данные для оценки эффективности использования трудовых ресурсов

Для эффективного анализа данных и для нахождения проблемных участков в производстве необходимо находить отклонения в показателях. Отклонения бывают нескольких видов и отличаются как единицами измерения, так и способом получения, среди них можно выделить:

  • Стандартное отклонение;
  • Абсолютное отклонение;
  • Относительное отклонение;
  • Селективное отклонение;
  • Кумулятивное отклонение;
  • Отклонение во временном разрезе.

Как рассчитать отклонение в каждом случае, вы узнаете из этой статьи.

Понятие выборочного наблюдения и область его применения.

Выборочное наблюдение применяется, когда применение сплошного наблюдения физически невозможно из-за большого массива данных или экономически нецелесообразно. Физическая невозможность имеет место, например, при изучении пассажиропотоков, рыночных цен, семейных бюджетов. Экономическая нецелесообразность имеет место при оценке качества товаров, связанной с их уничтожением, например, дегустация, испытание кирпичей на прочность и т.п.

Предлагаем ознакомиться  Определить средний размер заработной платы

Статистические единицы, отобранные для наблюдения, составляют выборочную совокупность или выборку, а весь их массив — генеральную совокупность (ГС). При этом числоединиц ввыборке обозначают n, а во всей ГС — N. Отношение n/N называется относительныйразмер или долявыборки.

Качество результатов выборочного наблюдения зависит от репрезентативности выборки, то есть от того, насколько она представительна в ГС. Для обеспечения репрезентативности выборки необходимо соблюдать принцип случайности отбора единиц, который предполагает, что на включение единицы ГС в выборку не может повлиять какой-либо иной фактор кроме случая.

  1. Собственно случайный отбор или «метод лото», когда статистическим величинам присваиваются порядковые номера, заносимые на определенные предметы (например, бочонки), которые затем перемешиваются в некоторой емкости (например, в мешке) и выбираются наугад. На практике этот способ осуществляют с помощью генератора случайных чисел или математических таблиц случайных чисел.
  2. Механический отбор, согласно которому отбирается каждая (N/n)-я величина генеральной совокупности. Например, если она содержит 100 000 величин, а требуется выбрать 1 000, то в выборку попадет каждая 100 000 / 1000 = 100-я величина. Причем, если они не ранжированы, то первая выбирается наугад из первой сотни, а номера других будут на сотню больше. Например, если первой оказалась единица № 19, то следующей должна быть № 119, затем № 219, затем № 319 и т.д. Если единицы генеральной совокупности ранжированы, то первой выбирается № 50, затем № 150, затем № 250 и так далее.
  3. Отбор величин из неоднородного массива данных ведется стратифицированным (расслоенным) способом, когда генеральная совокупность предварительно разбивается на однородные группы, к которым применяется случайный или механический отбор.
  4. Особый способ составления выборки представляет собой серийный отбор, при котором случайно или механически выбирают не отдельные величины, а их серии (последовательности с какого-то номера по какой-то подряд), внутри которых ведут сплошное наблюдение.

Приповторном отборе попавшие в выборку статистические величины или их серии после использования возвращаются в генеральную совокупность, имея шанс попасть в новую выборку. При этом у всех величин генеральной совокупности одинаковая вероятность включения в выборку.

Бесповторный отбор означает, что попавшие в выборку статистические величины или их серии после использования не возвращаются в генеральную совокупность, а потому для остальных величин последней повышается вероятность попадания в следующую выборку.

Бесповторный отбор дает более точные результаты, поэтому применяется чаще. Но есть ситуации, когда его применить нельзя (изучение пассажиропотоков, потребительского спроса и т.п.) и тогда ведется повторный отбор.

Ряды динамики — это ряды статистических показателей, характеризующих развитие явлений природы и общества во времени. Публикуемые Госкомстатом России статистические сборники содержат большое количество рядов динамики в табличной форме. Ряды динамики позволяют выявить закономерности развития изучаемых явлений.

Ряды динамики содержат два вида показателей. Показатели времени (годы, кварталы, месяцы и др.) или моменты времени (на начало года, на начало каждого месяца и т.п.). Показатели уровней ряда. Показатели уровней рядов динамики могут быть выражены абсолютными величинами (производство продукта в тоннах или рублях), относительными величинами (удельный вес городского населения в %) и средними величинами (средняя заработная плата работников отрасли по годам и т. п.). В табличной форме ряд динамики содержит два столбца или две строки.

Правильное построение рядов динамики предполагает выполнение ряда требований:

  1. все показатели ряда динамики должны быть научно обоснованными, достоверными;
  2. показатели ряда динамики должны быть сопоставимы по времени, т.е. должны быть исчислены за одинаковые периоды времени или на одинаковые даты;
  3. показатели ряда динамики должны быть сопоставимы по территории;
  4. показатели ряда динамики должны быть сопоставимы по содержанию, т.е. исчислены по единой методологии, одинаковым способом;
  5. показатели ряда динамики должны быть сопоставимы по кругу учитываемых хозяйств. Все показатели ряда динамики должны быть приведены в одних и тех же единицах измерения.

Статистические показатели могут характеризовать либо результаты изучаемого процесса за период времени, либо состояние изучаемого явления на определенный момент времени, т.е. показатели могут быть интервальными ( периодическими ) и моментными. Соответственно первоначально ряды динамики могут быть либо интервальными, либо моментными. Моментные ряды динамики в свою очередь могут быть с равными и неравными промежутками времени.

Отклонение от среднего значения в процентах

Первоначальные ряды динамики могут быть преобразованы в ряд средних величин и ряд относительных величин (цепной и базисный). Такие ряды динамики называют производными рядами динамики.

Методика расчета среднего уровня в рядах динамики различна, обусловлена видом ряда динамики. На примерах рассмотрим виды рядов динамики и формулы для расчета среднего уровня.

При уменьшении абсолютных значений ряда будет соответственно «уменьшение», «снижение».

Показатели абсолютного прироста свидетельствуют о том, что, например, в 1998 г. производство продукта «А» увеличилось по сравнению с 1997 г. на 4 тыс. т, а по сравнению с 1994 г. — на 34 тыс. т.; по остальным годам см. табл. 11.5 гр. 3 и 4.

Так, например, в 1997 г. объем производства продукта «А» по сравнению с 1996 г. составил 105,5 % (

Тпр = Тр — 100% или Тпр= абсолютный прирост / уровень предшествующего периода * 100%

Так, например, в 1996 г. по сравнению с 1995 г. продукта «А» произведено больше на 3,8 % (103,8 %- 100%) или (8:210)х100%, а по сравнению с 1994 г. — на 9% (109% — 100%).

Если абсолютные уровни в ряду уменьшаются, то темп будет меньше 100% и соответственно будет темп снижения (темп прироста со знаком минус).

Абсолютное значение 1% прироста (гр. 11) показывает, сколько единиц надо произвести в данном периоде, чтобы уровень предыдущего периода возрос на 1 %. В нашем примере, в 1995 г. надо было произвести 2,0 тыс. т., а в 1998 г. — 2,3 тыс. т., т.е. значительно больше.

— уровень предшествующего периода разделить на 100;

— цепные абсолютные приросты разделить на соответствующие цепные темпы прироста.

Абсолютное значение 1% прироста =

В динамике, особенно за длительный период, важен совместный анализ темпов прироста с содержанием каждого процента прироста или снижения.

Отклонение от среднего значения в процентах

Заметим, что рассмотренная методика анализа рядов динамики применима как для рядов динамики, уровни которых выражены абсолютными величинами (т, тыс. руб., число работников и т.д.), так и для рядов динамики, уровни которых выражены относительными показателями (% брака, % зольности угля и др.) или средними величинами (средняя урожайность в ц/га, средняя заработная плата и т.п.).

Наряду с рассмотренными аналитическими показателями, исчисляемыми за каждый год в сравнении с предшествующим или начальным уровнем, при анализе рядов динамики необходимо исчислить средние за период аналитические показатели: средний уровень ряда, средний годовой абсолютный прирост (уменьшение) и средний годовой темп роста и темп прироста.

Среднегодовой объем производства продукта за 1994- 1998 гг. составил 218,4 тыс. т.

Ежегодные абсолютные приросты изменялись по годам от 4 до 12 тыс.т (см.гр.3), а среднегодовой прирост производства за период 1995 — 1998 гг. составил 8,5 тыс. т.

Методы расчета среднего темпа роста и среднего темпа прироста требуют более подробного рассмотрения. Рассмотрим их на примере приведенных в таблице годовых показателей уровня ряда.

Методы и способы формирования выборочной совокупности.

В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.

Отклонение от среднего значения в процентах

Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.

1) индивидуальный отбор — в выборку отбираются отдельные единицы;

2) групповой отбор — в выборку попадают качественно однородные группы или серии изучаемых единиц;

3) комбинированный отбор — это комбинация индивидуального и группового отбора.Способы отбора определяются правилами формирования выборочной совокупности.

Выборка может быть:

  • собственно-случайная состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки. Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.
  • механическая состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки. Так, при 2%-ной выборке отбирается каждая 50-я единица (1:0,02), при 5%-ной выборке — каждая 20-я единица (1:0,05) и т.д. Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.
  • типическая – при которойгенеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность. Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность;
  • серийная – при которой генеральную совокупность делят на одинаковые по объему группы — серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию;
  • комбинированная – выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.

В статистике различают следующие способы отбора единиц в выборочную совокупность:

  • одноступенчатая выборка — каждая отобранная единица сразу же подвергается изучению по заданному признаку (собственно-случайная и серийная выборки);
  • многоступенчатая выборка — производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы (типическая выборка с механическим способом отбора единиц в выборочную совокупность).

Кроме того различают:

  • повторный отбор – по схеме возвращенного шара. При этом каждая попавшая в выборку единица иди серия возвращается в генеральную совокупность и поэтому имеет шанс снова попасть в выборку;
  • бесповторный отбор – по схеме невозвращенного шара. Он имеет более точные результаты при одном и том же объеме выборки.
Предлагаем ознакомиться  Куда относятся проценты по кредиту

Отклонение от среднего значения в процентах

На развитие явлений по времени оказывают влияние факторы различные по характеру и силе воздействия. Некоторые из них носят случайный характер, другие оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития.

Важной задачей статистики является выявление в рядах динамики тренда, освобожденного от действия различных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней и аналитического выравнивания и др.

Метод укрупнения интервалов основан на укрупнении периодов времени, к которым относятся уровни ряда динамики, т.е. представляет из себя замену данных, имеющих отношение к мелким временным периодам, данными по более крупным периодам. Особенно эффективен, когда первоначальные уровни ряда относятся к коротким промежуткам времени.

Например, ряды показателей, относящиеся к ежедневным событиям, заменяются рядами, относящимся к недельным, помесячным и т.д. Это позволит более отчетливо показать «ось развития явления». Средняя, исчисленная по укрупненным интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.

Метод скользящей средней схож с предыдущим, но в данном случаефактические уровнизаменяются средними уровнями, рассчитанными для последовательно подвижных (скользящих) укрупненных интервалов, охватывающих m уровней ряда.

Например, если принять m=3, то вначале рассчитывается средняя из первых трех уровней ряда, затем – из такого же числа уровней, но начиная со второго по счету, далее – начиная с третьего и т.д. Таким образом, средняя как бы «скользит» по ряду динамики, передвигаясь на один срок. Рассчитанные из m членов скользящие средние относятся к середине (центру) каждого интервала.

Этот метод устраняет лишь случайные колебания. Если же ряд имеет сезонную волну, то она сохранится и после сглаживания методом скользящей средней.

Аналитическое выравнивание. В целях устранения случайных колебаний и выявления тренда применяется выравнивание уровней ряда по аналитическим формулам (или аналитическое выравнивание). Его суть состоит в замене эмпирических (фактических) уровней теоретическими , которые рассчитаны по определенному уравнению, принятому за математическую модель тренда, где теоретические уровни рассматриваются как функция времени: .

1. Определение на основе фактических данных вида гипотетической функции , способной наиболее адекватно отразить тенденцию развития исследуемого показателя.

2. Нахождение по эмпирическим данным параметров указанной функции (уравнения)

3. Расчет по найденному уравнению теоретических (выровненных) уровней.

Выбор той или иной функции осуществляется, как правило, на основе графического изображения эмпирических данных.

В качестве моделей служат уравнения регрессии, параметры которых рассчитывают по способу наименьших квадратов

Ниже приводятся наиболее часто используемые для выравнивания динамических рядов уравнения регрессии с указанием для отражения каких именно тенденций развития они наиболее всего подходят.

Вид уравнения Отражаемая уравнением тенденция развития
Уравнение прямой Отклонение от среднего значения в процентах Равномерный рост при b1{amp}gt;0 или равномерное падение при b1 {amp}lt; 0
Показательная функция Отклонение от среднего значения в процентах Ускоряющийся рост при b1{amp}gt;1 или замедляющееся падение при b1
Гипербола Отклонение от среднего значения в процентах Замедляющееся падение при b1 {amp}gt; 0 или замедляющийся рост при b1 {amp}lt; 0
Парабола Отклонение от среднего значения в процентах Рост, переходящий в падение, или падение, переходящее в рост в точке t = Отклонение от среднего значения в процентах

Если периоды или моменты времени пронумеровать так, чтобы получилось St =0, то вышеприведенные алгоритмы существенно упростятся и превратятся в

Выровненные уровни на графике расположатся на одной прямой, проходящей на самом близком расстоянии от фактических уровней данного динамического ряда. Сумма квадратов отклонений является отражением влияния случайных факторов.

Здесь n — число наблюдений, а m — число параметров в уравнении ( их у нас два – b1 и b0).

Основная тенденция (тренд) показывает, как воздействуют систематические факторы на уровни ряда динамики, а колеблемость уровней около тренда ( ) служит мерой воздействия остаточных факторов.

где n — число наблюдений, т.е. число уровней ряда,

m — число параметров в уравнении, y — фактический уровень ряда,

— выровненный уровень ряда, — средний уровень ряда.

Более удачная, чем другие, модель не всегда может оказаться достаточно удовлетворительной. Ее можно признать таковой только в том случае, когда критерий F у нее перешагнет известную критическую границу. Эта граница устанавливается с помощью таблиц F-распределения.

Ряды динамики (интервальные, моментные), смыкание рядов динамики.

1) показатели периодов времени (годы, кварталы, месяцы, дни или даты);

2) показатели, характеризующие исследуемый объект за временные периоды или на соответствующие даты, которые называют уровнями ряда.

Уровни ряда выражаются как абсолютными, так и средними или относительными величинами. В зависимости от характера показателей строят динамические ряды абсолютных, относительных и средних величин. Ряды динамики из относительных и средних величин строят на основе производных рядов абсолютных величин. Различают интервальные и моментные ряды динамики.

Динамический интервальный ряд содержит значения показателей за определенные периоды времени. В интервальном ряду уровни можно суммировать, получая объем явления за более длительный период, или так называемые накопленные итоги.

Динамический моментный ряд отражает значения показателей на определенный момент времени (дату времени). В моментных рядах исследователя может интересовать только разность явлений, отражающая изменение уровня ряда между определенными датами, поскольку сумма уровней здесь не имеет реального содержания. Накопленные итоги здесь не рассчитываются.

Важнейшим условием правильного построения динамических рядов является сопоставимость уровней рядов, относящихся к различным периодам. Уровни должны быть представлены в однородных величинах, должна иметь место одинаковая полнота охвата различных частей явления.

Для того, чтобы избежать искажения реальной динамики, в статистическом исследовании проводятся предварительные расчеты (смыкание рядов динамики), которые предшествуют статистическому анализу динамических рядов. Под смыканием рядов динамики понимается объединение в один ряд двух и более рядов, уровни которых рассчитаны по разной методологии или не соответствуют территориальным границам и т.д.

Числовые значения того или иного статистического показателя, составляющего ряд динамики, называютуровнями ряда и обычно обозначают буквой y. Первый член ряда y1 называют начальным или базисным уровнем, а последний yn – конечным. Моменты или периоды времени, к которым относятся уровни, обозначают через t.

Ряды динамики, как правило, представляют в виде таблицы или графика, причем по оси абсцисс строится шкала времени t, а по оси ординат – шкала уровней ряда y.

Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщать в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении изменений того или иного показателя в разные периоды, в разных странах и т.д.

Обобщенной характеристикой ряда динамики может служить прежде всего средний уровень ряда. Способ расчета среднего уровня зависит от того, моментный ряд или интервальный (периодный).

В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины из уровней ряда, т.е.

= Если имеется моментный ряд, содержащий n уровней (y1, y2, …, yn) с равными промежутками между датами (моментами времени), то такой ряд легко преобразовать в ряд средних величин. При этом показатель (уровень) на начало каждого периода одновременно является показателем на конец предыдущего периода. Тогда средняя величина показателя для каждого периода (промежутка между датами) может быть рассчитана как полусумма значений у на начало и конец периода, т.е. как . Количество таких средних будет . Как указывалось ранее, для рядов средних величин средний уровень рассчитывается по средней арифметической.

Следовательно, можно записать: .После преобразования числителя получаем: ,

где Y1 и Yn — первый и последний уровни ряда; Yi — промежуточные уровни.

Отклонение от среднего значения в процентах

Эта средняя известна в статистике как средняя хронологическая для моментных рядов. Такое название она получила от слова «cronos» (время, лат.), так как рассчитывается из меняющихся во времени показателей.

В случае неравных промежутков между датами среднюю хронологическую для моментного ряда можно рассчитать как среднюю арифметическую из средних значений уровней на каждую пару моментов, взвешенных по величине расстояний (отрезков времени) между датами, т.е. .В данном случае предполагается, что в промежутках между датами уровни принмали разные значения, и мы из двух известных (yi и yi 1) определяем средние, из которых затем уже рассчитываем общую среднюю для всего анализируемого периода.

где – время, в течение которого уровень оставался неизменным.

Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения.

Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть

Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений, то есть

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность.

Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными.

Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами.

Б= =

Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность.Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий среднийтемп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.

Даны показатели затрат на средства уборки для двух заведений: 10, 21, 49, 15, 59 и 31, 29, 34, 27, 32, где средним значением будет 30,8 и 30,6. Показатели в среднем приблизительно одинаковы, однако даже визуально видно, что значения в одном заведении изменяются не равномерно, что их контроль производится от случая к случаю.

Рассчитывается оно следующим образом:

  1. Необходимо рассчитать среднее значение для проверяемого ряда данных. (10 21 49 15 59)/5=30,8
  2. Найти разницу между каждым показателем и средним значением. 10-30,8=-20,8; 21-30,8=9,8; 49-30,8=18,2; 15-30,8=15,8; 59-30,8=28,2
  3. Возвести каждое значение разницы в квадрат. -20,82=432,64; 9,82=96,04; 18,22=331,24; 15,82=249,64; 28,22=795,24.
  4. Сложить полученные результаты. 432,64 96,04 331,24 249,64 795,24=1904,8
  5. Полученный результат делиться на количество значений в ряду. 1904,8/5=380,96
  6. Корень из полученного числа и будет средним отклонением ?380,96=19,51

Отклонение от среднего значения в процентах

Обязательный минимум

Под понятием абсолютного отклонения принято подразумевать отличия одного показателя от другого в числовом значении. Например, разница выручки за два дня: 15-13=2, где 2 – абсолютное отклонение. Этот способ подходит для нахождения отклонения между фактическим и планируемым результатом.

Для правильного выбора уменьшаемого и вычитаемого, необходимо четко понимать, для чего находится отклонения, например в случае с прибылью, планируемая будет уменьшаемым, а фактическая – вычитаемым. Использование абсолютного отклонения редко помогает при глубоком анализе ситуации.

Предлагаем ознакомиться  ОКПО по ИНН узнать бесплатно онлайн

Процент воспринимается лучше

Относительным отклонением считают процентное отношение одного показателя к другому. Чаще всего его рассчитывают для понимания того, как тот или иной компонент относится к целому значению ли параметру, а также для нахождения отношения между планируемым показателем и фактическим. Это помогает найти отношение затрат на транспортировку к сумме всех затрат, или объясняет, как в процентах относится полученная выручка к планируемой.

Применение относительного отклонения позволяет повысить уровень наглядности проводимого анализа, что в свою очередь дает возможность более точно вычленить и оценить произошедшие в системе изменения.

Как это поможет в сезонной работе

Отклонение от среднего значения в процентах

Селективное отклонение призвано помочь сравнить исследуемые данные за определенные промежутки времени. Данным отрезком времени могут быть кварталы, месяцы, не редко это сравнения дней. И для большей информативности необходимо сравнивать временные отрезки не в пределах одного года, а с такими же за прошлые года. Это более точно покажет общую тенденцию изменений величин на протяжении нескольких лет и поможет четче выявить влияющие на них факторы.

Наибольшую актуальность применение селективного отклонения находит в фирмах, доход которых неравномерно распределен на протяжении года. То есть поставщики сезонных продуктов или услуг.

Сумма, исчисляемая нарастающим итогом, называется кумулятивным отклонением. Благодаря ему производится оценка параметра, его рост или падение за заданный промежуток времени, чаще всего месяц. А также позволяет спланировать конечный результат изменений за период. Благодаря этому можно игнорировать случайные, несистематические изменения параметра, не влияющие на долгосрочную перспективу (весь период) и давать более четкую тенденцию движения параметра.

Зачастую с его помощью происходит сравнение фактического и планируемого показателя. Является крайне важным в случае негативного отклонения планового значения от фактического. Позволяет использовать в анализе реальный результат вместо планируемого или желаемого показателей.

Практическое воплощение в Excel

Процент отклонения вычисляется через вычитание старого значения от нового значения, а далее деление результата на старое значение. Результат вычисления этой формулы в Excel должен отображаться в процентном формате ячейки. В данном примере формула вычисления выглядит следующим образом (150-120)/120=25%. Формулу легко проверить 120 25%=150.

Обратите внимание! Если мы старое и новое число поменяем местами, то у нас получиться уже формула для вычисления наценки .

Ниже на рисунке представлен пример, как выше описанное вычисление представить в виде формулы Excel. Формула в ячейке D2 вычисляет процент отклонения между значениями продаж для текущего и прошлого года: =(C2-B2)/B2

Важно обратит внимание в данной формуле на наличие скобок. По умолчанию в Excel операция деления всегда имеет высший приоритет по отношению к операции вычитания. Поэтому если мы не поставим скобки, тогда сначала будет разделено значение, а потом из него вычитается другое значение. Такое вычисление (без наличия скобок) будет ошибочным. Закрытие первой части вычислений в формуле скобками автоматически повышает приоритет операции вычитания выше по отношению к операции деления.

     Ну а теперь отойдём от скучной теории и на практике посмотрим, как работает функция СТАНДОТКЛОН. Я не буду рассматривать все вариации функции стандартного отклонения в Excel, достаточно и одной, но в примерах. А для примера рассмотрим, как определяется статистика стабильности продаж.

        =СТАНДОТКЛОН.Г(_число1_;_число2_; ….), где:

  • Число1, число2, … — являют собой генеральную совокупность значений и имеют только числовые значения или же ссылки на них. Формула поддерживает до 255 числовых значений.

Теперь создадим файл примера и на его основе рассмотрим работу этой функции.      Так как для проведения аналитических вычислений необходимо использовать не меньше трёх значений, как в принципе в любом статистическом анализе, то и я взял условно 3 периода, это может быть год, квартал, месяц или неделя.

                =ЕСЛИ(H4{amp}lt;0,1;»стабильно»;ЕСЛИ(H4{amp}lt;0,25;»нормально»;»не стабильно»))

Все диапазоны взяты условно для наглядности, у ваших задач могут быть совсем другие условия.        Для улучшения визуализации данных, когда ваша таблица имеет тысячи позиций стоит воспользоваться возможностью сортировки данных, наложить автофильтр по неким условиям, которые вам нужны или же использовать условное форматирование, что бы цветовой гаммой выделить определенные варианты, это будет очень наглядно.

Для начала выделяете диапазон ячеек, для которых будете применяться условное форматирование. В панели управления «Главная» выбираете «Условное форматирование» и в выпадающем меню пункт «Правила выделения ячеек» и следующим нажимаете пункт меню «Текст содержит…». Появляется диалоговое окно в которое вы вписываете свои условия.

      После того как прописали условия, к примеру, «стабильно» — зелёный цвет, «нормально» — жёлтый и «не стабильно» — красный, получим красивую и понятную таблицу в которой видно на что в первую очередь обращать внимание.

Использование VBA для функции СТАНДОТКЛОН.Г

      Если вы не умеете создавать и работать с макросами почитайте мою статью «Как создать макрос в Excel».

Формула процентного изменения очень часто используется в Excel. Например, чтобы вычислить ежемесячное или общее изменение.

Ежемесячное изменение

  1. Выберите ячейку C3 и введите формулу, показанную ниже.
  2. Выберите ячейку C3 и примените к ней процентный формат.
  3. Чтобы не повторять 1-й и 2-й шаг еще десять раз, выделите ячейку C3, нажмите на ее правый нижний угол и перетащите его вниз до ячейки С13.
  4. Проверьте, всели прошло хорошо.

Общее изменение

  1. Аналогичным образом, мы можем вычислить общее изменение. На этот раз зафиксируем ссылку на ячейку В2. Выделите ячейку D3 и введите формулу, показанную ниже.
  2. Выберите ячейку D3 и применить к ней процентный формат.
  3. Выделите ячейку D3, нажмите на ее правый нижний угол и перетащите его вниз до ячейки D13.
  4. Проверьте, всели прошло хорошо.

Объяснение: Когда мы протягиваем (копируем) формулу вниз, абсолютная ссылка ($B$2) остается неизменной, а относительная (B3) изменяется – B4, B5, B6 и т.д. Возможно, этот пример слишком сложен для вас на данном этапе, но он показывает несколько полезных и мощных возможностей, которыми располагает Excel.

Сезонные колебания и индексы сезонности.

Основной принцип хозяйствования для получения максимального эффекта – это максимизация доходов и минимизация затрат. Изучая сезонные колебания решается задача максимального уравнения в каждом уровне года.

1. Выявление специфики развития явления во внутригодовой динамике;

2. Измерение сезонных колебаний с построением модели сезонной волны;

Для измерения сезонных колебаний обычно исчисляют индеек сезонности. В общем виде они определяются отношением исходных уравнений ряда динамики к теоретическим уравнениям, выступающим в качестве базы для сравнения.

Так как на сезонные колебания накладываются случайные отклонения, для их устранения производят усреднение индексов сезонности.

Средние индексы сезонных колебаний свободны от влияние случайных отклонений основной тенденции развития.

Отклонение от среднего значения в процентах

, где — общее среднее;

Основным элементом индексного отношения является индек­сируемая величина. Под индексируемой величиной понимают зна­чение признака статистической совокупности, изменение которого яв­ляется объектом изучения.

1) оценка изменения сложного явления;

2) определение влияния отдельных факторов на изменение сложного явления;

3) сравнение величины какого-то явления с величиной прошло­го периода, величиной по другой территории, а также с нор­мативами, планами,прогнозами.

1) по содержанию индексируемых величин;

2) по степени охвата элементов совокупности;

3) по методам расчета общих индексов.

По содержанию индексируемых величин индексы разделяют­ся на индексы количественных (объемных) показателей и индексы ка­чественных показателей. Индексы количественных показателей -индексы физического объема промышленной продукции, физического объема продаж, численности и др. Индексы качественных показате­лей — индексы цен, себестоимости, производительности труда, средней заработной платы и др.

q — количество (объем) какого-либо продукта в натуральном вы­ражении; р — цена единицы продукции; z- себестоимость единицы продукции; t— затраты времени на производство единицы продукции (тру­доемкость); w— выработка продукции в стоимостном выражении в единицу времени; v- выработка продукции в натуральном выражении в единицу времени; Т — общие затраты времени или численность работников.

Для того чтобы различать, к какому периоду или объекту отно­сятся индексируемые величины, принято справа внизу за соответст­вующим символом ставить подстрочные знаки. Так, например, в ин­дексах динамики, как правило, для сравниваемых (текущих, отчетных) периодов используется подстрочный знак 1 и для периодов, с которы­ми производится сравнение,

Индивидуальные индексы служат для характеристики изме­нения отдельных элементов сложного явления (например -изменение объема выпуска продукции одного вида). Они представляют собой относительные величины динамики, выполнения обязательств, сравнения индексируемых величин.

Индивидуальный индекс физического объема продукции опре­деляется

С аналитической точки зрения приведенные индивидуальные индексы динамики аналогичны коэффициентам (темпам) роста и ха­рактеризуют изменение индексируемой величины в текущем периоде по сравнению с базисным, т. е. показывают, во сколько раз она воз­росла (уменьшилась) или сколько процентов составляет ее рост (сни­жение). Значения индексов выражают в коэффициентах или процен­тах.

Общий (сводный) индекс отражает изменение всех элементов сложного явления.

Агрегатный индекс является основной формой индекса. Агре­гатным он называется потому, что его числитель и знаменатель пред­ставляют собой набор «агрегат»

Средний индекс – это индекс, вычисленный как средняя величина из индивидуальных индексов. Агрегатный индекс является основной формой общего индекса, поэтому средний индекс должен быть тождествен агрегатному индексу. При исчислении средних индексов используются две формы средних: арифметическая и гармоническая.

Средний арифметический индекс тождествен агрегатному индексу, если весами индивидуальных индексов будут слагаемые знаменателя агрегатного индекса. Только в этом случае величина индекса, рассчитанного по формуле средней арифметической, будет равна агрегатному индексу.

Ссылка на основную публикацию
Adblock detector